Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Sports Med ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652410

RESUMO

BACKGROUND: Resistance exercise is the most common training modality included within strength and conditioning (S&C) practice. Understanding dose-response relationships between resistance training and a range of outcomes relevant to physical and sporting performance is of primary importance for quality S&C prescription. OBJECTIVES: The aim of this meta-analysis was to use contemporary modelling techniques to investigate resistance-only and resistance-dominant training interventions, and explore relationships between training variables (frequency, volume, intensity), participant characteristics (training status, sex), and improvements across a range of outcome domains including maximum strength, power, vertical jump, change of direction, and sprinting performance. METHODS: Data were obtained from a database of training studies conducted between 1962 and 2018, which comprised healthy trained or untrained adults engaged in resistance-only or resistance-dominant interventions. Studies were not required to include a control group. Standardized mean difference effect sizes were calculated and interventions categorized according to a range of training variables describing frequency (number of sessions per week), volume (number of sets and repetitions performed), overall intensity (intensity of effort and load, categorised as low, medium or high), and intensity of load (represented as % of one-repetition maximum [1RM] prescribed). Contemporary modelling techniques including Bayesian mixed-effects meta-analytic models were fitted to investigate linear and non-linear dose-responses with models compared based on predictive accuracy. RESULTS: Data from a total of 295 studies comprising 535 groups and 6,710 participants were included with analyses conducted on time points ≤ 26 weeks. The best performing model included: duration from baseline, average number of sets, and the main and interaction effects between outcome domain and intensity of load (% 1RM) expressed non-linearly. Model performance was not improved by the inclusion of participant training status or sex. CONCLUSIONS: The current meta-analysis represents the most comprehensive investigation of dose-response relationships across a range of outcome domains commonly targeted within strength and conditioning to date. Results demonstrate the magnitude of improvements is predominantly influenced by training intensity of load and the outcome measured. When considering the effects of intensity as a % 1RM, profiles differ across outcome domains with maximum strength likely to be maximised with the heaviest loads, vertical jump performance likely to be maximised with relatively light loads (~ 30% 1RM), and power likely to be maximised with low to moderate loads (40-70% 1RM).

2.
J Strength Cond Res ; 38(4): 787-790, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513182

RESUMO

ABSTRACT: Nunes, JP, Blazevich, AJ, Schoenfeld, BJ, Kassiano, W, Costa, BDV, Ribeiro, AS, Nakamura, M, Nosaka, K, and Cyrino, ES. Determining changes in muscle size and architecture after exercise training: One site does not fit all. J Strength Cond Res 38(4): 787-790, 2024-Different methods can be used to assess muscle hypertrophy, but the effects of training on regional changes in muscle size can be detected only using direct muscle measurements such as muscle thickness, cross-sectional area, or volume. Importantly, muscle size increases vary across regions within and between muscles after resistance training programs (i.e., heterogeneous, or nonuniform, muscle hypertrophy). Muscle architectural changes, including fascicle length and pennation angle, after resistance and stretch training programs are also region-specific. In this paper, we show that the literature indicates that a single-site measure of muscle shape does not properly capture the effects achieved after exercise training interventions and that conclusions concerning the magnitude of muscle adaptations can vary substantially depending on the muscle site to be examined. Thus, we propose that measurements of muscle size and architecture should be completed at multiple sites across regions between the agonist muscles within a muscle group and along the length of the muscles to provide an adequate picture of training effects.


Assuntos
Músculo Esquelético , Treinamento de Força , Humanos , Músculo Esquelético/fisiologia , Força Muscular/fisiologia , Músculo Quadríceps/fisiologia , Exercício Físico/fisiologia , Treinamento de Força/métodos , Hipertrofia
3.
PeerJ ; 12: e16777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274324

RESUMO

Background: Based on emerging evidence that brief periods of cessation from resistance training (RT) may re-sensitize muscle to anabolic stimuli, we aimed to investigate the effects of a 1-week deload interval at the midpoint of a 9-week RT program on muscular adaptations in resistance-trained individuals. Methods: Thirty-nine young men (n = 29) and women (n = 10) were randomly assigned to 1 of 2 experimental, parallel groups: An experimental group that abstained from RT for 1 week at the midpoint of a 9-week, high-volume RT program (DELOAD) or a traditional training group that performed the same RT program continuously over the study period (TRAD). The lower body routines were directly supervised by the research staff while upper body training was carried out in an unsupervised fashion. Muscle growth outcomes included assessments of muscle thickness along proximal, mid and distal regions of the middle and lateral quadriceps femoris as well as the mid-region of the triceps surae. Adaptions in lower body isometric and dynamic strength, local muscular endurance of the quadriceps, and lower body muscle power were also assessed. Results: Results indicated no appreciable differences in increases of lower body muscle size, local endurance, and power between groups. Alternatively, TRAD showed greater improvements in both isometric and dynamic lower body strength compared to DELOAD. Additionally, TRAD showed some slight psychological benefits as assessed by the readiness to train questionnaire over DELOAD. Conclusion: In conclusion, our findings suggest that a 1-week deload period at the midpoint of a 9-week RT program appears to negatively influence measures of lower body muscle strength but has no effect on lower body hypertrophy, power or local muscular endurance.


Assuntos
Treinamento de Força , Masculino , Humanos , Feminino , Treinamento de Força/métodos , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Força Muscular/fisiologia , Adaptação Fisiológica
4.
J Strength Cond Res ; 38(2): 228-235, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088936

RESUMO

ABSTRACT: Fitas, A, Santos, P, Gomes, M, Pezarat-Correia, P, Schoenfeld, BJ, and Mendonca, GV. Prediction of one repetition maximum in free-weight back squat using a mixed approach: the combination of the individual load-velocity profile and generalized equations. J Strength Cond Res 38(2): 228-235, 2024-We aimed to develop a mixed methods approach for 1 repetition maximum (1RM) prediction based on the development of generalized equations and the individual load-velocity profile (LVP), and to explore the validity of such equations for 1RM prediction. Fifty-seven young men volunteered to participate. The submaximal load-velocity relationship was obtained for the free-weight parallel back squat. The estimated load at 0 velocity (LD0) was used as a single predictor, and in combination with the slope of the individual LVP, to develop equations predictive of 1RM. Prediction accuracy was determined through the mean absolute percent error and Bland-Altman plots. LD0 was predictive of 1RM ( p < 0.0001), explaining 70.2% of its variance. Adding the slope of the LVP to the model increased the prediction power of 1RM to 84.4% ( p < 0.0001). The absolute percent error between actual and predicted 1RM was lower for the predictions combining LD0 and slope (6.9 vs. 9.6%). The mean difference between actual and estimated 1RM was nearly zero and showed heteroscedasticity for the LD0 model, but not for the combined model. The limits of agreement error were of 31.9 and 23.5 kg for LD0 and LD0 combined with slope, respectively. In conclusion, the slope of the individual LVP adds predictive value to LD0 in 1RM estimation on a group level and avoids error trends in the estimation of 1RM over the entire spectrum of muscle strength. However, the use of mixed methods does not reach acceptable accuracy for 1RM prediction of the free-weight back squat on an individual basis.


Assuntos
Treinamento de Força , Levantamento de Peso , Masculino , Humanos , Levantamento de Peso/fisiologia , Postura , Força Muscular/fisiologia
5.
J Sports Sci ; 41(17): 1617-1634, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38037792

RESUMO

Meta-analysis has become commonplace within sport and exercise science for synthesising and summarising empirical studies. However, most research in the field focuses upon mean effects, particularly the effects of interventions to improve outcomes such as fitness or performance. It is thought that individual responses to interventions vary considerably. Hence, interest has increased in exploring precision or personalised exercise approaches. Not only is the mean often affected by interventions, but variation may also be impacted. Exploration of variation in studies such as randomised controlled trials (RCTs) can yield insight into interindividual heterogeneity in response to interventions and help determine generalisability of effects. Yet, larger samples sizes than those used for typical mean effects are required when probing variation. Thus, in a field with small samples such as sport and exercise science, exploration of variation through a meta-analytic framework is appealing. Despite the value of embracing and exploring variation alongside mean effects in sport and exercise science, it is rarely applied to research synthesis through meta-analysis. We introduce and evaluate different effect size calculations along with models for meta-analysis of variation using relatable examples from resistance training RCTs.


Assuntos
Treinamento de Força , Esportes , Humanos , Exercício Físico
6.
J Sports Sci ; 41(12): 1207-1217, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37789670

RESUMO

This study compared the effects of supervised versus unsupervised resistance training (RT) on measures of muscle strength and hypertrophy in resistance-trained individuals. Thirty-six young men and women were randomly assigned to one of two experimental, parallel groups to complete an 8-week RT programme: One group received direct supervision for their RT sessions (SUP); the other group performed the same RT programme in an unsupervised manner (UNSUP). Programme variables were kept constant between groups. We obtained pre- and post-study assessments of body composition via multi-frequency bioelectrical impedance analysis (MF-BIA), muscle thickness of the upper and lower limbs via ultrasound, 1 repetition maximum (RM) in the back squat and bench press, isometric knee extension strength, and countermovement jump (CMJ) height. Results showed the SUP group generally achieved larger increases in muscle thickness for the triceps brachii, all sites of the rectus femoris, and the proximal region of the vastus lateralis. MF-BIA indicated increases in lean mass favoured SUP. Squat 1RM was greater for SUP; bench press 1RM and isometric knee extension were similar between conditions. CMJ increases modestly favoured UNSUP. In conclusion, our findings suggest that supervised RT promotes greater muscular adaptations and enhances exercise adherence in young, resistance-trained individuals.


Assuntos
Treinamento de Força , Masculino , Humanos , Feminino , Treinamento de Força/métodos , Músculo Quadríceps/fisiologia , Músculo Esquelético/fisiologia , Extremidade Inferior , Braço , Força Muscular/fisiologia , Adaptação Fisiológica
8.
Int J Exerc Sci ; 16(3): 513-524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622037

RESUMO

Cell swelling caused by resistance training is proposed to provide an anabolic stimulus for muscle growth and it is believed that these effects are heightened with the use of low loads. The purpose of this study was to compare the acute effects of two volume-equated resistance training (RT) protocols, low-load (LL) versus high-load (HL), on elbow flexor muscles thickness, arm circumference, and blood lactate concentration in well-trained individuals. Eight resistance-trained males performed the following two RT protocols involving unilateral elbow flexion of the dominant arm: i) LL, four sets with 50% 1 repetition-maximum [1 RM] and ii) HL, ten sets with 85% 1 RM until failure, and equated volume. Pre- and post-session measurements included muscle thickness of the elbow flexors (biceps brachii and brachialis), upper arm circumference, and blood lactate concentration. Significant pre- to post-session increases were found in both protocols for muscle thickness (F (1, 28) = 11.74, p = 0.0019), and blood lactate (F (1, 28) = 35.55, p < 0.0001); no statistically significant differences were observed between conditions, however, the magnitude of increases favored LL. Significant between-condition differences favoring LL were observed for total repetitions (p = 0.007), time under tension (p = 0.007), and training density (p = 0.007). These results suggest that LL training promotes superior post-session increases in muscle thickness, indicating that RT protocols with longer times under tension and densities are beneficial when the goal is to promote acute cell swelling.

9.
Nutrients ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37432300

RESUMO

The purpose of this paper was to carry out a systematic review with a meta-analysis of randomized controlled trials that examined the combined effects of resistance training (RT) and creatine supplementation on regional changes in muscle mass, with direct imaging measures of hypertrophy. Moreover, we performed regression analyses to determine the potential influence of covariates. We included trials that had a duration of at least 6 weeks and examined the combined effects of creatine supplementation and RT on site-specific direct measures of hypertrophy (magnetic resonance imaging (MRI), computed tomography (CT), or ultrasound) in healthy adults. A total of 44 outcomes were analyzed across 10 studies that met the inclusion criteria. A univariate analysis of all the standardized outcomes showed a pooled mean estimate of 0.11 (95% Credible Interval (CrI): -0.02 to 0.25), providing evidence for a very small effect favoring creatine supplementation when combined with RT compared to RT and a placebo. Multivariate analyses found similar small benefits for the combination of creatine supplementation and RT on changes in the upper and lower body muscle thickness (0.10-0.16 cm). Analyses of the moderating effects indicated a small superior benefit for creatine supplementation in younger compared to older adults (0.17 (95%CrI: -0.09 to 0.45)). In conclusion, the results suggest that creatine supplementation combined with RT promotes a small increase in the direct measures of skeletal muscle hypertrophy in both the upper and lower body.


Assuntos
Creatina , Treinamento de Força , Humanos , Idoso , Hipertrofia , Músculos , Suplementos Nutricionais
10.
Sports Med ; 53(9): 1789-1803, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37410360

RESUMO

BACKGROUND: Augmented feedback is often used during resistance training to enhance acute physical performance and has shown promise as a method of improving chronic physical adaptation. However, there are inconsistencies in the scientific literature regarding the magnitude of the acute and chronic responses to feedback and the optimal method with which it is provided. OBJECTIVE: This systematic review and meta-analysis aimed to (1) establish the evidence for the effects of feedback on acute resistance training performance and chronic training adaptations; (2) quantify the effects of feedback on acute kinematic outcomes and changes in physical adaptations; and (3) assess the effects of moderating factors on the influence of feedback during resistance training. METHODS: Twenty studies were included in this systematic review and meta-analysis. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched, and studies were included if they were peer-reviewed investigations, written in English, and involved the provision of feedback during or following dynamic resistance exercise. Furthermore, studies must have evaluated either acute training performance or chronic physical adaptations. Risk of bias was assessed using a modified Downs and Black assessment tool. Multilevel meta-analyses were performed to quantify the effects of feedback on acute and chronic training outcomes. RESULTS: Feedback enhanced acute kinetic and kinematic outputs, muscular endurance, motivation, competitiveness, and perceived effort, while greater improvements in speed, strength, jump performance, and technical competency were reported when feedback was provided chronically. Furthermore, greater frequencies of feedback (e.g., following every repetition) were found to be most beneficial for enhancing acute performance. Results demonstrated that feedback improves acute barbell velocities by approximately 8.4% (g = 0.63, 95% confidence interval [CI] 0.36-0.90). Moderator analysis revealed that both verbal (g = 0.47, 95% CI 0.22-0.71) and visual feedback (g = 1.11, 95% CI 0.61-1.61) were superior to no feedback, but visual feedback was superior to verbal feedback. For chronic outcomes, jump performance might have been positively influenced (g = 0.39, 95% CI - 0.20 to 0.99) and short sprint performance was likely enhanced (g = 0.47, 95% CI 0.10-0.84) to a greater extent when feedback is provided throughout a training cycle. CONCLUSIONS: Feedback during resistance training can lead to enhanced acute performance within a training session and greater chronic adaptations. Studies included in our analysis demonstrated a positive influence of feedback, with all outcomes showing superior results than when no feedback is provided. For practitioners, it is recommended that high-frequency, visual feedback is consistently provided to individuals when they complete resistance training, and this may be particularly useful during periods of low motivation or when greater competitiveness is beneficial. Alternatively, researchers must be aware of the ergogenic effects of feedback on acute and chronic responses and ensure that feedback is standardised when investigating resistance training.


Assuntos
Treinamento de Força , Humanos , Treinamento de Força/métodos , Força Muscular/fisiologia , Exercício Físico/fisiologia , Adaptação Fisiológica , Aclimatação
11.
J Strength Cond Res ; 37(7): 1350-1357, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347940

RESUMO

ABSTRACT: Rosa, A, Coleman, M, Haun, C, Grgic, J, and Schoenfeld, BJ. Repetition performance, rating of perceived discomfort, and blood lactate responses to different rest interval lengths in single-joint and multijoint lower-body exercise. J Strength Cond Res 37(7): 1350-1357, 2023-The purpose of this study was to examine the effects of different rest interval lengths (RILs) on repetition performance, rating of discomfort, and blood lactate responses during lower-body single-joint and multijoint exercises. This study used a counterbalanced design where each subject performed the Smith machine back squat (BS) and leg extension (LE) using 3 different RIL configurations (1, 2, and 3 minutes) in a randomized fashion. Data collection occurred over the span of 3 separate days. Volunteers were randomly allocated to perform the independent variables (RILs and exercises) in 1 of 12 potential configurations. The initial session was allotted for familiarization with the rating of discomfort scale and 10 repetition maximum testing. The other 2 sessions involved training with the different configurations of RIL length using both the BS and LE. Randomization ensured that the BS was performed first in one of the training sessions and the LE was performed first in the other session. Results indicated that longer RILs had a small positive effect on repetition performance, with longer rest durations allowing for more repetitions compared with shorter durations. The largest difference in repetition performance between RILs was observed between 1 minute and 2-3 minutes rest; there were trivial differences in repetition performance between 2 and 3 minutes rest for both the BS and LE. Blood lactate levels were slightly higher with longer RILs. Overall, BS showed greater increases in blood lactate compared with LE, and these differences were magnified over time. Exercise selection and RIL both influenced rating of discomfort, with LE producing less discomfort than BS and longer RILs reducing perceived discomfort. Our findings suggest that RIL influences the repetition performance, blood lactate, and rating of discomfort responses between single-joint and multijoint exercises.


Assuntos
Treinamento de Força , Humanos , Exercício Físico/fisiologia , Terapia por Exercício , Lactatos , Músculo Esquelético/fisiologia , Treinamento de Força/métodos , Descanso/fisiologia
12.
Sports Med Open ; 9(1): 28, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171517

RESUMO

Resistance training is a method of enhancing strength, gait speed, mobility, and health. However, the external load required to induce these benefits is a contentious issue. A growing body of evidence suggests that when lower load resistance training [i.e., loads < 50% of one-repetition maximum (1RM)] is completed within close proximity to concentric failure, it can serve as an effective alternative to traditional higher load (i.e., loads > 70% of 1RM) training and in many cases can promote similar or even superior physiological adaptations. Such findings are important given that confidence with external loads and access to training facilities and equipment are commonly cited barriers to regular resistance training. Here, we review some of the mechanisms and physiological changes in response to lower load resistance training. We also consider the evidence for applying lower loads for those at risk of cardiovascular and metabolic diseases and those with reduced mobility. Finally, we provide practical recommendations, specifically that to maximize the benefits of lower load resistance training, high levels of effort and training in close proximity to concentric failure are required. Additionally, using lower loads 2-3 times per week with 3-4 sets per exercise, and loads no lower than 30% of 1RM can enhance muscle hypertrophy and strength adaptations. Consequently, implementing lower load resistance training can be a beneficial and viable resistance training method for a wide range of fitness- and health-related goals.

13.
J Funct Morphol Kinesiol ; 8(2)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37218848

RESUMO

Emerging evidence indicates that the use of low-load resistance training in combination with blood flow restriction (LL-BFR) can be an effective method to elicit increases in muscle size, with most research showing similar whole muscle development of the extremities compared to high-load (HL) training. It is conceivable that properties unique to LL-BFR such as greater ischemia, reperfusion, and metabolite accumulation may enhance the stress on type I fibers during training compared to the use of LLs without occlusion. Accordingly, the purpose of this paper was to systematically review the relevant literature on the fiber-type-specific response to LL-BFR and provide insights into future directions for research. A total of 11 studies met inclusion criteria. Results of the review suggest that the magnitude of type I fiber hypertrophy is at least as great, and sometimes greater, than type II hypertrophy when performing LL-BFR. This finding is in contrast to HL training, where the magnitude of type II fiber hypertrophy tends to be substantially greater than that of type I myofibers. However, limited data directly compare training with LL-BFR to nonoccluded LL or HL conditions, thus precluding the ability to draw strong inferences as to whether the absolute magnitude of type I hypertrophy is indeed greater in LL-BFR vs. traditional HL training. Moreover, it remains unclear as to whether combining LL-BFR with traditional HL training may enhance whole muscle hypertrophy via greater increases in type I myofiber cross-sectional area.

14.
J Funct Morphol Kinesiol ; 8(2)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218855

RESUMO

The present paper aimed to systematically review case studies on physique athletes to evaluate longitudinal changes in measures of body composition, neuromuscular performance, chronic hormonal levels, physiological adaptations, and psychometric outcomes during pre-contest preparation. We included studies that (1) were classified as case studies involving physique athletes during the pre-contest phase of their competitive cycle; (2) involved adults (18+ years of age) as participants; (3) were published in an English-language peer-reviewed journal; (4) had a pre-contest duration of at least 3 months; (5) reported changes across contest preparation relating to measures of body composition (fat mass, lean mass, and bone mineral density), neuromuscular performance (strength and power), chronic hormonal levels (testosterone, estrogen, cortisol, leptin, and ghrelin), physiological adaptations (maximal aerobic capacity, resting energy expenditure, heart rate, blood pressure, menstrual function, and sleep quality), and/or psychometric outcomes (mood states and food desire). Our review ultimately included 11 case studies comprising 15 ostensibly drug-free athletes (male = 8, female = 7) who competed in various physique-oriented divisions including bodybuilding, figure, and bikini. The results indicated marked alterations across the array of analyzed outcomes, sometimes with high inter-individual variability and divergent sex-specific responses. The complexities and implications of these findings are discussed herein.

15.
J Strength Cond Res ; 37(8): e444-e454, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184967

RESUMO

ABSTRACT: Escalante, G, Barakat, C, Tinsley, GM, and Schoenfeld, BJ. Nutrition, training, supplementation, and performance-enhancing drug practices of male and female physique athletes peaking for competition. J Strength Cond Res 37(8): e444-e454, 2023-The purpose of this descriptive investigation was threefold: (a) to assess the nutrition, training, supplement, and performance-enhancement drug practices of male and female physique competitors 30 days before competition; (b) to examine the specific water and macronutrient manipulation performed by competitors during the last 3 days before competition; and (c) to assess physiological responses to precontest preparation including body composition, body fluids, resting heart rate, and blood pressure. Competitors reported performing moderately high volume, moderate to high repetition, split-body resistance training programs performed on most days of the week; the programs included the use of a variety of advanced training methods. A majority of competitors included cardio to expedite fat loss, and most reported performing cardio in a fasted state despite a lack of objective evidentiary support for the practice. Competitors substantially restricted calories and consumed protein in amounts well above research-based guidelines (>3 g·kg -1 ·d -1 ); carbohydrate and lipid intake were highly variable. Water was substantially reduced in the final 3 days before competition. Competitors used a variety of dietary supplements throughout the study period, many of which are not supported by research. Both male and female competitors reported using performance enhancing drugs (∼48 and ∼38%, respectively) including testosterone derivatives, selective androgen receptor modulators, and human growth hormone. More research is warranted to elucidate safer and more effective peak week practices for physique competitors.


Assuntos
Substâncias para Melhoria do Desempenho , Humanos , Masculino , Feminino , Estado Nutricional , Atletas , Suplementos Nutricionais , Água
16.
Exp Gerontol ; 178: 112219, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236327

RESUMO

OBJECTIVES: Strength training is widely recommended to improve strength, muscle mass and power. However, the feasibility and potential efficacy of strength training using lighter loads near failure on these outcomes in middle and older-aged adults remains unclear. METHODS: 23 community-living adults were randomized into two groups: Traditional strength training (ST) (8-12 repetitions) or a lighter load, higher repetitions (LLHR) (20-24 repetitions) group. Participants performed a full-body workout (twice a week) with 8 exercises at a perceived exertion of 7-8 (0-10 scale) for 10 weeks. Post-testing was performed by an assessor blinded to group assignments. An analysis of covariance (ANCOVA) was used to examine between group differences using baseline values as a covariate. RESULTS: The study involved individuals with a mean age of 59 years, of which 61 % were women. The LLHR group demonstrated a high attendance rate of 92 % (9.5 %) and reported leg press exercise RPE of 7.1 (0.53), along with a session feeling scale of 2.0 (1.7). There was a trivial difference in fat free mass (FFM) favoring LLHR vs ST [0.27 kg 95 % CI (-0.87, 1.42)]. The ST group exhibited superior increases in leg press 1 repetition maximum (1RM) strength [-14 kg (-23, -5)], while the LLHR group showed greater strength endurance increases (65 % 1RM) [8 repetitions (2, 14)]. Leg press power [41 W (-42, 124)] and exercise efficacy [-3.8 (-21.2, 13.5)] demonstrated trivial between-group differences. CONCLUSION: A pragmatic, full-body strength training program with lighter loads taken close to failure appears to be a viable option for promoting muscular adaptations in middle- and older-aged adults. These results are exploratory and require a larger trial for confirmation.


Assuntos
Treinamento de Força , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Projetos Piloto , Exercício Físico , Levantamento de Peso/fisiologia , Correlação de Dados , Força Muscular/fisiologia , Músculo Esquelético/fisiologia
17.
Sci Rep ; 13(1): 8212, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217559

RESUMO

The purpose of this study was to compare the effects of electromagnetic resistance alone, as well as in combination with variable resistance or accentuated eccentric methods, with traditional dynamic constant external resistance exercise on myoelectric activity during elbow flexion. The study employed a within-participant randomized, cross-over design whereby 16 young, resistance-trained male and female volunteers performed elbow flexion exercise under each of the following conditions: using a dumbbell (DB); using a commercial electromagnetic resistance device (ELECTRO); variable resistance (VR) using a setting on the device that attempts to match the level of resistance to the human strength curve, and; eccentric overload (EO) using a setting on the device that increases the load by 50% on the eccentric portion of each repetition. Surface electromyography (sEMG) was obtained for the biceps brachii, brachioradialis and anterior deltoid on each of the conditions. Participants performed the conditions at their predetermined 10 repetition maximum. " The order of performance for the conditions was counterbalanced, with trials separated by a 10-min recovery period. The sEMG was synced to a motion capture system to assess sEMG amplitude at elbow joint angles of 30°, 50°, 70°, 90°, 110°, with amplitude normalized to the maximal activation. The anterior deltoid showed the largest differences in amplitude between conditions, where median estimates indicated greater concentric sEMG amplitude (~ 7-10%) with EO, ELECTRO and VR compared with DB. Concentric biceps brachii sEMG amplitude was similar between conditions. In contrast, results indicated a greater eccentric amplitude with DB compared to ELECTRO and VR, but unlikely to exceed a 5% difference. Data indicated a greater concentric and eccentric brachioradialis sEMG amplitude with DB compared to all other conditions, but differences were unlikely to exceed 5%. The electromagnetic device tended to produce greater amplitudes in the anterior deltoid, while DB tended to produce greater amplitudes in the brachioradialis; amplitude for the biceps brachii was relatively similar between conditions. Overall, any observed differences were relatively modest, equating to magnitudes of ~ 5% and not likely greater than 10%. These differences would seem to be of minimal practical significance.


Assuntos
Eletromiografia , Músculo Esquelético , Treinamento de Força , Estudos Cross-Over , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Cotovelo/fisiologia , Braço/fisiologia , Contração Muscular , Adulto Jovem , Adulto
18.
Int J Exerc Sci ; 16(2): 267-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114196

RESUMO

This study's purpose was to compare the effects of different carbohydrate (CHO) intakes on body composition and muscular strength following eight weeks of resistance training (RT) in pre-conditioned men. In addition, we explored the individual responses to different CHO intakes. Twenty-nine young men volunteered to participate in this study. The participants were divided into two groups according to their relative CHO intake: lower (L-CHO; n = 14) and higher (H-CHO; n = 15). Participants performed a RT program four days a week for eight weeks. The lean soft tissue (LST) and fat mass were determined by dual-energy X-ray absorptiometry. Muscular strength was determined by a one-repetition maximum (1RM) test in the bench press, squat, and arm curl exercises. Both groups increased LST (P < 0.05) with no statistical differences between conditions (L-CHO = +0.8% vs. H-CHO = +3.5%). Neither group demonstrated changes in fat mass. Both groups increased 1RM (P < 0.05) in the bench press (L-CHO = +3.6% vs. H-CHO = +5.8%) and squat (L-CHO = +7.5% vs. H-CHO = +9.4%); however, only H-CHO significantly increased arm curl 1RM (P < 0.05) at post-training (L-CHO = +3.0% vs. H-CHO = +6.6%). Responsiveness was greater in H-CHO vs. L-CHO for LST and arm curl 1RM. In conclusion, lower and higher CHO intakes promote similar increase in LST and muscular strength; however, a greater intake may improve the responsiveness to gains in lean mass and arm curl strength in pre-conditioned men.

19.
Sci Rep ; 13(1): 3676, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871095

RESUMO

A systematic review and meta-analysis was conducted to determine the effects of resistance training under hypoxic conditions (RTH) on muscle hypertrophy and strength development. Searches of PubMed-Medline, Web of Science, Sport Discus and the Cochrane Library were conducted comparing the effect of RTH versus normoxia (RTN) on muscle hypertrophy (cross sectional area (CSA), lean mass and muscle thickness) and strength development [1-repetition maximum (1RM)]. An overall meta-analysis and subanalyses of training load (low, moderate or high), inter-set rest interval (short, moderate or long) and severity of hypoxia (moderate or high) were conducted to explore the effects on RTH outcomes. Seventeen studies met inclusion criteria. The overall analyses showed similar improvements in CSA (SMD [CIs] = 0.17 [- 0.07; 0.42]) and 1RM (SMD = 0.13 [0.0; 0.27]) between RTH and RTN. Subanalyses indicated a medium effect on CSA for longer inter-set rest intervals and a small effect for moderate hypoxia and moderate loads favoring RTH. Moreover, a moderate effect for longer inter-set rest intervals and a trivial effect for severe hypoxia and moderate loads favoring RTH was found on 1RM. Evidence suggests that RTH employed with moderate loads (60-80% 1RM) and longer inter-set rest intervals (≥ 120 s) enhances muscle hypertrophy and strength compared to normoxia. The use of moderate hypoxia (14.3-16% FiO2) seems to be somewhat beneficial to hypertrophy but not strength. Further research is required with greater standardization of protocols to draw stronger conclusions on the topic.


Assuntos
Gastrópodes , Treinamento de Força , Humanos , Animais , Hipertrofia , Hipóxia , Músculos
20.
Eur J Appl Physiol ; 123(6): 1311-1321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36802029

RESUMO

PURPOSE: This study evaluated the concurrent training (CT) effect in combination with either progressive energy restriction (PER) or severe energy restriction (SER) on body composition and strength-related variables in resistance-trained women. METHODS: Fourteen women (29.5 ± 3.8 years; 23.8 ± 2.8 kg·m-2) were randomly assigned to a PER (n = 7) or SER (n = 7) group. Participants performed an 8-week CT program. Pre- and post-intervention measures of fat mass (FM) and fat-free mass (FFM) were assessed by dual-energy X-ray absorptiometry and strength-related variables were assessed through 1-repetition maximum (in the squat and bench press) and countermovement jump. RESULTS: Significant reductions in FM were observed in PER and SER (Δ = - 1.7 ± 0.4 kg; P = < 0.001; ES = - 0.39 and Δ = - 1.2 ± 0.6 kg; P = 0.002; ES = - 0.20, respectively). After correcting FFM for fat-free adipose tissue (FFAT), no significant differences for this variable were found either in PER (Δ = - 0.3 ± 0.1; P = 0.071; ES = - 0.06) or in SER (Δ = - 0.2 ± 0.1; P = 0.578; ES = - 0.04). There were no significant changes in the strength-related variables. No between-group differences were found in any of the variables. CONCLUSION: A PER has similar effects to a SER on body composition and strength in resistance-trained women performing a CT program. Given that PER is more flexible and thus may enhance dietary adherence, it might be a better alternative for FM reduction compared to SER.


Assuntos
Treinamento de Força , Feminino , Humanos , Absorciometria de Fóton , Tecido Adiposo , Composição Corporal , Dieta , Força Muscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...